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Abstract. The traditional approach using Carnot cycles to the problem of establishing the 
existence of absolute temperature and entropy and to deriving d'Q = T dS is shown to 
remain valid for systems whose entropy is non-extensive as well as for systems whose 
entropy is extensive. However, it is seen that the analytical approach to this problem 
is valid only for systems whose entropy is extensive. Two methods for resolving this 
difficulty are presented. 

1. Introduction 

In a recent series of papers (Landsberg and Tranah 1980a, b, Tranah and Landsberg 
1980), some of the thermodynamic properties of systems possessing non-extensive 
entropies were discussed. To a large extent, interest in such systems has been aroused 
by the fact that the entropy function for a black hole may be seen to be non-extensive 
(Smarr 1973, Hawking 1976). However, such systems are well known to astronomers, 
displaying as they do negative specific heats (see Lynden-Bell and Lynden-Bell 1977 
and references cited therein). 

Landsberg and Tranah considered, as an example of a non-extensive system, a 
generalised classical gas having entropy given, in terms of the independent variables 
V, U and N (representing volume, internal energy and number of particles respec- 
tively), by 

S = kN In(aUVg/Nh)  

where g, h > O  but h is not necessarily equal to (g + 1). If two examples of such a gas 
are considered first as separate systems and then combined to form a composite 
system, the entropy, S,  of the composite system is given by 

(1.1) s = sl+ sz + (T 

where the indices 1 and 2 refer to the two separate systems and 

(T =kN1 ln(yh/pag)+k(N-N1) ln[(l -y Ih / ( l  -p)( l  -a) ' ] .  

Here a = VI/ V, p = U l / U ,  y = N1/N and it has been assumed that V = VI + Vz, 
U = U1 + Uz, N =NI +Nz. 

Therefore, for this system 

s 3 s1 + sz, 
equality holding only when (T = 0. Hence, in this case, the entropy is superadditive 
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rather than additive as would be the case if the entropy was extensive (Dunning-Davies 
1983). 

Again, it follows from (1.1) that 

dS  = dS1+ dS2 + du. (1.2) 

The form of (1.2) gives cause for concern when what might be termed the analytical 
approach to establishing the existence of absolute temperature and entropy (see 
Landsberg 1961) is considered, since this approach leads to the relation 

dS = dS1 + dS2. 

As is seen by comparing with (1,2), this latter equation does not hold for systems 
having non-extensive entropies. Therefore, as far as the analytical approach is concer- 
ned, the method for establishing the existence of absolute temperature and entropy- 
and, therefore, the method of deriving d'Q = T dS-needs to be examined since it is 
not valid generally. This will be done in 0 2, where one method of resolving the 
difficulties encountered with this approach will also be presented. 

Section 3 will be devoted to an examination of the more traditional approach to 
the derivation of d'Q = T dS in which use is made of Carnot cycles. It is found that 
this approach is valid for all systems irrespective of whether their entropies are 
extensive. 

Finally, in $ 4 ,  an alternative way of resolving the difficulties encountered with the 
analytical approach will be presented. 

2. Analytical approach to the derivation of d'Q = T dS 

This approach consists of two steps: 
(1) the second law of thermodynamics is used to show that the increment of heat, 

d'Q, possesses an integrating factor; 
(2) the derivation is completed by considering the thermal equilibrium of two 

systems; applying the result that an integrating factor exists to each system separately 
and also to the combined system; and using 

(2.1) 

for the increment of heat supplied to the combined system by quasi-static processes. 
This latter point is violated for a non-extensive system since, in that case, if 

increments of heat d'Q1 and d'Q2 are given to the two separate systems, the increment 
of heat d'Q given to the composite system would not be given by (2.1) but rather by 

(2.2) 
where d'q might be termed an increment of 'heat of interaction' and would be zero 
only for an extensive system. 

Again, in this approach, all the systems to be considered are supposed to be simple 
systems. As has been pointed out by Munster (1970), this means that the composite 
system and each separate system on its own should constitute a closed system. Since 
(2.2), rather than (2.1), holds for a non-extensive system, this latter point is violated 
also for such a system. 

However, when the two separate systems are regarded as parts of a composite 
system, the total amount of heat given specifically to the two systems is (d'Q, + d'Qz), 

d'Q = d'Q, + d'Qz 

d'Q = d'Q1+ d'Q2 + d'q 
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although the composite system itself received an amount of heat d'Q given by (2.2). 
This quantity of heat (d'Q1 + d'Q2), which will be denoted by d'@, is the total amount 
of heat which would have been given to the composite system if it had been extensive 
or, alternatively, if all the systems under consideration had been simple. Hence, 
consider 

d'@ = d'Q1+ d'Q2. 

By using the usual methods adopted in the analytical approach, i t  may be shown that 
quantities 2, S I ,  S2 and T exist such that 

d'Q1= T dS1 d'Q2 = T dS2, 

and 

d'@ = T d2.  

Again, the total increment of heat actually given to the composite system is d'Q. 
If this composite system is supposed placed in thermal contact with some other system 
and these are regarded as two separate systems then, by repeating the above argument, 
i t  may be shown that a quantity S exists such that 

d'Q = T dS. 

Hence, it follows from (2.2) that 

T dC d'@ = d'Q - d'q = T dS - d'q 

or 

dS - dC = T-'d'q = d o  ; 

that is, d'q has an integrating factor. 
Therefore, in thermal equilibrium 

d'Q = d'Q1+ d'Q2 + d'q 

implies 

T d S =  T dS1+ T dS2+ T d~ 

and, once again, it is concluded that d'Q = T dS. In this modified analytical approach, 
it is assumed nowhere (either directly or indirectly) that the entropy is extensive. 

3. The traditional derivation of d'Q = T dS 

The well known traditional approach to the derivation of d'Q = T dS  may be split up 
quite conveniently into four parts. By assuming the validity of the second law of 
thermodynamics, i t  is necessary to prove that 

(a) if a system is taken around a reversible cycle, absorbing heat Q1 at temperature 
e l  and heat Qz at temperature B 2 ,  the ratio Q1/Q2 is a function of e l  and e2 only; 

(b) this ratio may be written 

Q l / Q 2 =  TIIT, 
where TI and T2 are absolute temperatures; 
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(c) the entropy, S, defined by 

dS = (d’Q/T),,, 

is a function of state; 
(d) for an adiabatically isolated system, the entropy never decreases. 
Following Denbigh (1971), it is seen that, to prove (a), it is necessary first to show 

that Q 1  and Q2 must have opposite signs. To complete the proof, two systems are 
considered and both are taken around the same cycle. If the second system absorbs 
heat Q ;  and Q ;  at temperatures O1 and 82 respectively, the proof depends on finding 
integers n and n’ such that, if the first system is taken through n complete cycles and 
the second through n ’ complete cycles in the opposite direction, then 

nQ1 = -n’Q;. (3.1) 

The term nQl is obtained by giving an amount of heat Q 1  to the first system in each 
of the II cycles and so, the difficulties encountered in 9: 2, when discussing the composite 
system, do not occur. A similar comment applies for the term n’Q; also. Hence 
nowhere in the argument do questions of extensivity arise and so, the proof of (a) 
holds for all systems. 

As far as the proof of (b) is concerned, it is seen (Thompson 1972) that it is 
necessary to consider one system only and questions of extensivity simply do not arise. 
Hence, this proof holds for all systems. 

To prove (c), it is necessary to consider any arbitrary closed reversible cycle 
approximated by a network of Carnot cycles (Denbigh 1971, Thompson 1972). 
Suppose that, in the ith of these cycles, quantities of heat S’Qih and S’Qic are absorbed 
at temperatures Tih and T,, respectively. Then, for this cycle 

8’Qih/T,hf8‘Qic/Tic= 0. 

Such an equation will exist for each cycle of the network and adding together as many 
of these equations as the number of Carnot cycles into which the actual cycle has 
been divided gives 

Due to the way in which this result is obtained, the problems met in 9: 2, when 
discussing the composite system, do not arise. Also, since each individual contribution 
to this sum is of the form S‘Q,/T,, this latter equation may be written 

If the network is allowed to become finer and finer, Carnot’s theorem that, for any 
closed reversible cycle C, 

is seen to follow in the limit. 
Hence, the proof of (c) also holds for all systems since, once again, questions of 

extensivity simply do not arise in the proof. However, although they will be seen to 
have no  effect on the proof of (c), two further points might be noted at this juncture. 
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Firstly, suppose a system consists of n parts, each at the same temperature T. If 
the various parts absorb quantities of heat d’Q1, d’Q2, . . . , d’Q, tinder reversible 
conditions, their entropy changes are 

d’Qi/T, d’Qz/ T, , . . ,  d’Q,/ T 
respectively. The sum of these is (Ei d’Qi)/T. Also, if d’Q is the total amount of heat 
absorbed by the whole system, it will equal X i  d‘Qi only if the system is extensive. In 
general 

d’Q = d’Qi +d’q 2 d‘Qi. 
i i 

Hence, the sum of the entropy changes of the various parts will be less than or equal 
to the overall entropy change, equality holding when the system under consideration 
is extensive. 

Secondly, if a system consisting of n parts is taken around a cycle in which quantities 
of heat Qh and Q, are absorbed from reservoirs at temperatures Th and Tc respectively, 
then 

Qh/Th+Qc/Tc= 0. (3.2) 
If the individual parts absorb amounts of heat Qih and Qic ( i  = 1 , 2 , .  . . , n )  from the 
reservoirs at temperatures T h  and Tc respectively, 

Qi h /  Th + Q i c l  T‘ = 0 (3.3) 

f o r i = 1 , 2  , . . . ,  n. 
However, in general, 

and 

Q, = 1 Qic + q c  2 Qic, 
i I 

equality holding only when an extensive system is under consideration. 
Hence, 

Using (3.2) and (3.3), it follows that 

qh/Th+qc/Tc= 0 

that is, what might be termed the total ‘entropy of interaction’ in the cycle is also zero. 
Therefore, if a system consisting of n parts is under consideration, it is seen that 

the quantities Qh and Q,, rather than Qih and Qic (i = 1, 2 , .  . . , n), are of importance 
when calculating the efficiency. However, by the nature of the arguments, these 
considerations are seen to have no effect on the validity of the proof of (c). 

The proof of (d) is seen to hold for all systems since, once again, questions of 
extensivity do not arise in it (Thompson 1972). 

It might be noted that the difficulties which may arise, due to non-extensivity, 
when considering the giving of heat to a system, occur only when composite systems 
(as in 9: 2) or the separate parts of a particular system (as considered earlier in this 
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section) are under consideration. No such difficulties occur when the giving of heat 
to a single system is under consideration. Hence, for example, no such difficulties 
arise in the derivation of (3.1). 

Therefore, the traditional approach using Carnot cycles is seen to lead to the 
existence of absolute temperature and entropy, as well as to the derivation of d'Q = 
T dS, without assuming-either directly or indirectly-that the entropy is extensive. 

4. An alternative resolution of the problem 

To some, one of the appeals of the analytical approach to thermodynamics is that it 
is totally divorced from heat cycles and other concepts borrowed from engineering. 
However, a combination of the analytical and traditional approaches offers an alterna- 
tive resolution of the problem discussed in 9: 2. 

By the usual analytical methods, it may be deduced using the second law as starting 
point, that the increment of heat d'Q possesses an integrating factor; that is 

d'Q = Ad4 (4.1) 

where A = A  (t ,  4, a 3 ,  a4, . . , ) and the independent thermodynamic variables are the 
empirical temperature t, the empirical entropy 4, and other variables a3, ad , .  . . 
(Landsberg 1961). 

Now, if a system is taken around a reversible cycle, absorbing heat d'Q1 at 
temperature t l  and heat d'Q2 at temperature f Z ,  then, as mentioned in 9: 3, it may be 
shown that 

d'QZ/d'Ql= O ( t d / e ( t d  
where f3 is some function of f alone. 

alternative expression 
But, applying (4.1) to each of the increments of heat d'Q1 and d'Q2 leads to the 

d'Q2/d'Ql = A ( f 2 ,  4 ,  a 3 ,  a4, . . . I  d4lA ( t l ,  4, a 3 ,  a4, . . . 1 d4.  

u t ,  4, a 3 ,  a4, . . . ) = e ( t ) w i J ,  a 3 ,  a4, . .,. 1. 

For the latter two equations to be satisfied, it is necessary that 

Under these conditions 

d'Q = A  &$ = T dS 

where, if c is some constant, 

T = c e ( t ) ,  dS = c-- '@(4,  u3, a4, . . . ) d4.  

Again in this alternative discussion of the problem of establishing the existence 
of absolute temperature and entropy and of deriving d'Q = T dS, extensivity of the 
system has been assumed nowhere. 
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